Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652404

RESUMO

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Assuntos
Apoptose , Benzoquinonas , Sobrevivência Celular , Neoplasias Colorretais , Maleato de Dizocilpina , Mitocôndrias , Receptores de N-Metil-D-Aspartato , Humanos , Benzoquinonas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células HT29 , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
Anticancer Agents Med Chem ; 23(15): 1747-1753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37194932

RESUMO

BACKGROUND: Cancer is a life-threatening condition with an economic burden on societies. Phytotherapy is rapidly taking place in cancer research to increase the success of treatment and quality of life. Thymoquinone (TQ) is the main active phenolic compound obtained from the essential oil of the Nigella sativa (black cumin) plant seed. For a long time, black cumin has been used traditionally for the remedy of different diseases because of its various biological effects. It has been shown that most of these effects of black cumin seeds are due to TQ. TQ became a popular research topic for phytotherapy studies for its potential therapeutic applications, and more research is going on to fully understand its mechanisms of action, safety, and efficacy in humans. KRAS is a gene that regulates cell division and growth. Monoallelic variants in KRAS result in uncontrollable cell division, leading to cancer development. Studies have shown that cancer cells with KRAS mutations are often resistant to certain types of chemotherapy and targeted therapies. OBJECTIVE: This study aimed to compare the effect of TQ on cancer cells with and without KRAS mutation to better understand the reason why TQ may have different anticancer effects in the different types of cancer cells. METHODS: TQ was investigated for its cytotoxic and apoptotic effects in laryngeal cancer cells (HEp-2) without KRAS mutation and compared to mutant KRAS-transfected larynx cancer cells and KRAS mutation-carrying lung cancer cells (A549). RESULTS: We showed that TQ has more cytotoxic and apoptotic effects on laryngeal cancer cells without KRAS mutation than in cells with mutation. CONCLUSION: KRAS mutations decrease the effect of TQ on cell viability and apoptosis, and further studies are needed to fully understand the relationship between KRAS mutations and thymoquinone effectiveness in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Laríngeas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Laríngeas/tratamento farmacológico , Qualidade de Vida , Antineoplásicos/farmacologia , Apoptose , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Mutação
3.
Mol Biol Rep ; 50(6): 5439-5454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155017

RESUMO

BACKGROUND: Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS: The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS: Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS: Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.


Assuntos
Neoplasias , Nigella sativa , Humanos , Extratos Vegetais/farmacologia , NF-kappa B , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico
4.
Chin J Integr Med ; 29(8): 683-690, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37071326

RESUMO

OBJECTIVE: To explore the proliferation inhibitory effect of quinones from Blaps rynchopetera defense secretion on colorectal tumor cell lines. METHODS: Human colorectal cancer cell HT-29, human colorectal adenocarcinoma cell Caco-2 and normal human colon epithelial cell CCD841 were chosen for the evaluation of inhibitory activity of the main quinones of B. rynchopetera defense secretion, including methyl p-benzoquinone (MBQ), ethyl p-benzoquinone (EBQ), and methyl hydroquinone (MHQ), through methyl thiazolyl tetrazolium assay. The tumor-related factors, cell cycles, related gene expressions and protein levels were detected by enzyme-linked immunosorbent assy, flow cytometry, RT-polymerase chain reaction and Western blot, respectively. RESULTS: MBQ, EBQ, and MHQ could significantly inhibit the proliferation of Caco-2, with half maximal inhibitory concentration (IC50) values of 7.04 ± 0.88, 10.92 ± 0.32, 9.35 ± 0.83, HT-29, with IC50 values of 14.90 ± 2.71, 20.50 ± 6.37, 13.90 ± 1.30, and CCD841, with IC50 values of 11.40 ± 0.68, 7.02 ± 0.44 and 7.83 ± 0.05 µg/mL, respectively. Tested quinones can reduce the expression of tumor-related factors tumor necrosis factor α, interleukin (IL)-10, and IL-6 in HT-29 cells, selectively promote apoptosis, and regulate the cell cycle which can reduce the proportion of cells in the G1 phase and increase the proportion of the S phase. Meanwhile, tested quinones could up-regulate mRNA and protein expression of GSK-3ß and APC, while down-regulate that of ß-catenin, Frizzled1, c-Myc, and CyclinD1 in the Wnt/ß-catenin pathway of HT-29 cells. CONCLUSION: Quinones from B. rynchopetera defense secretion could inhibit the proliferation of colorectal tumor cells and reduce the expression of related factors, which would be functioned by regulating cell cycle, selectively promoting apoptosis, and affecting Wnt/ß-catenin pathway-related mRNA and protein expressions.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/metabolismo , Células CACO-2 , Quinonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Apoptose , Benzoquinonas/farmacologia , RNA Mensageiro , Via de Sinalização Wnt
5.
Biol Trace Elem Res ; 201(3): 1358-1367, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35484332

RESUMO

Iron is one of the most important essential elements for cell function. However, iron overload can exert destructive effects on various tissues, especially the liver. The present study was designed to evaluate the effect of thymoquinone (TQ) on hepatotoxicity induced by iron-overload in in vitro and mouse model. After in vitro studies, thirty mice were divided into five groups, six each. Group 1 received normal saline. Group 2 received five doses of iron dextran (i.p; 100 mg/kg, one dose every 2 days). Group 3 received TQ (orally, 2 mg/kg/day). Groups 4 and 5 were administrated iron dextran saline (i.p; 100 mg/kg, one dose every 2 days) following treatment with 0.5 and 2 mg/kg/day of TQ, respectively. Based on the findings of the DPPH experiment, although TQ has significant anti-radical potential, at a safe dose of 15 × 10+3 nM, it reduced the IC50 of iron dextran on HepG2 cells by about 25%, in in vitro. Following administration of low-dose TQ (0.5 mg/kg), a significant improvement was observed in serum hepatic enzymes activity and hepatic lipid peroxidation compared to iron dextran. However, administration of TQ-high dose (2 mg/kg) led to decrease antioxidant defense alongside increased serum hepatic enzymes and pathological damages in iron dextran-treated animals. Due to the different efficacy of TQ in treatment groups, it seems that the TQ therapeutic index is low and does not have significant safety in the iron overload status.


Assuntos
Dextranos , Sobrecarga de Ferro , Camundongos , Animais , Dextranos/metabolismo , Dextranos/farmacologia , Fígado/metabolismo , Antioxidantes/metabolismo , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Ferro/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Estresse Oxidativo
6.
Hum Exp Toxicol ; 41: 9603271221145422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510676

RESUMO

Thymoquinone (TQ) is one of the components extracted from Nigella sativa seeds and has antioxidant, anti-inflammatory, and anticancer effects. We evaluated the effect of TQ on 5-fluorouracil (5-FU) pharmacokinetics (PK) in vivo and in vitro on human colorectal cancer cell line. Ten Adult male Wistar rats were assigned to two groups. TQ treated group received intraperitoneal TQ once daily for 14 consecutive days (5 mg/kg). Both groups received intraperitoneal 5-FU (50 mg/kg) on day 15 and blood samples were collected from retro-orbital plexus. The pharmacokinetics parameters were analyzed using high-performance liquid chromatography (HPLC). Moreover, various concentrations of 5-FU, TQ, and combination of 5-FU and TQ were added to the HT-29 cell line and cell viability was measured using 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay. The maximum serum concentration (Cmax), area under the curve (AUC), and time of maximum concentration (Tmax) of 5-FU in TQ treated group were significantly increased approximately by 61, 60, and 24% compared to the control group, respectively. The combination of 5-FU with TQ (0.284 mM) showed a greater inhibitory effect on HT-29 cell growth compared to the alone 5-FU (0.027 and 0.055 mM) administration. TQ increases the AUC, Cmax, and Tmax of 5-FU and has a synergistic effect on the PK of 5-FU. Moreover, low concentration of TQ enhances the inhibitory effects of 5-FU on cell growth in colorectal cancer cell line. This synergistic effect might enhance the anticancer effects of low concentration of 5-FU, leading to drug dose reduction and reduced systemic toxicity of this chemotherapeutic agent.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Adulto , Ratos , Masculino , Animais , Fluoruracila/farmacologia , Ratos Wistar , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico
7.
Biol Pharm Bull ; 45(9): 1389-1393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047210

RESUMO

Thymoquinone is a popular health-promoting antioxidant supplement, but it may induce toxicity to cells and organs because of its propensity to promote oxidation of biomolecules under some conditions. Furthermore, as hydroquinones have been found to exhibit more potent antioxidant and prooxidant activities than their parent quinones, the reduced metabolite thymohydroquinone may have stronger effects than thymoquinone. In this study, the antioxidant and prooxidant activities of thymoquinone and thymohydroquinone were assessed to determine whether they both act as antioxidants and induce oxidative damage to biomolecules as do other quinones. Using ESR spectroscopy, we demonstrated that thymohydroquinone exhibits more potent antioxidant activity than does thymoquinone. In addition, thymohydroquinone was found to act as a prooxidant to induce oxidative damage of isolated plasmid DNA in the presence of free Cu2+ or Fe2+-ethylenediaminetetraacetic acid (EDTA). Interestingly, the prooxidant effect of thymohydroquinone in the presence of Fe2+ was not observed in the absence of EDTA. Thymohydroquinone thus was demonstrated to have two biologically relevant activities: as an antioxidant and a prooxidant.


Assuntos
Antioxidantes , Hidroquinonas , Antioxidantes/química , Benzoquinonas/farmacologia , Cobre , Ácido Edético , Hidroquinonas/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
Chem Biol Interact ; 365: 110070, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35921950

RESUMO

Thymoquinone, predominant bioactive compound in Nigella sativa L. (N.sativa) oil, may inhibit the activity of cytochrome P450 2C9 (CYP2C9). However, it is not clear whether thymoquinone can affect the pharmacokinetic behavior of warfarin. Thus, we further to investigate the effect of thymoquinone on warfarin 7-hydroxylation activity and to quantitatively evaluate their food-drug interactions (FDIs) potential. Our data demonstrated that thymoquinone could inhibit warfarin 7-hydroxylase activity with IC50 value of 11.35 ± 0.25 µM. The kinetic analysis indicated that thymoquinone exhibited competitive inhibition on warfarin 7-hydroxylation with Ki value of 3.50 ± 0.44 µM. FDIs risk prediction suggested that coadministration of thymoquinone (>18 mg/day) or dietary supplements containing thymoquinone (N.sativa > 1 g/day or N. sativa oil >1 g/day) might influence pharmacokinetic behavior of warfarin. In conclusion, coadministration of thymoquinone or dietary supplements containing thymoquinone in warfarin-treated patients would likely trigger off unexpected potential drug interactions.


Assuntos
Interações Alimento-Droga , Varfarina , Benzoquinonas/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Humanos , Cinética , Varfarina/farmacologia
9.
Biomed Pharmacother ; 153: 113349, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779419

RESUMO

In previous work, we tested the immunomodulatory effect of Nigella sativa (NS) fatty oil. Our results demonstrated that unrefined, obtained by cold pressing black cumin seed oil inhibited lymphocytes' proliferation and induced their apoptosis in a dose-dependent manner. In this study, we examined the immunomodulatory properties of essential oil (EO) obtained from the NS seeds by hydrodistillation and its two main constituents: thymoquinone (TQ) and p-cymene. We analyzed the proliferation, activation phenotype, and apoptosis rates of human T lymphocytes stimulated with an immobilized monoclonal anti-CD3 antibody in the presence of serial ethanol dilutions of tested oil or serial distilled water dilutions of tested compounds with flow cytometry. Our results showed that NSEO significantly inhibited the proliferation of CD4+ and CD8+ T lymphocytes, induced cell death in a dose-dependent manner, and reduced the expression of CD28 and CD25 antigens essential for lymphocyte activation. TQ inhibited the proliferation of T lymphocytes and induced cell death, particularly in high concentrations. Meanwhile, p-cymene did not influence lymphocyte proliferation. However, its high concentration induced cell necrosis. These results show that the essential oil from Nigella sativa has powerful immunomodulatory properties, which, at least partially, are related to the TQ component.


Assuntos
Nigella sativa , Óleos Voláteis , Apoptose , Benzoquinonas/farmacologia , Carum , Proliferação de Células , Humanos , Óleos Voláteis/farmacologia , Óleos de Plantas , Linfócitos T
10.
Curr Drug Metab ; 23(6): 447-459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676849

RESUMO

At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like, Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves the bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations to developing novel drug formulations, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the bloodbrain barrier (BBB) becomes an additional challenge. Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Nigella sativa , Plantas Medicinais , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Nigella sativa/química
11.
Int J Biol Macromol ; 214: 391-401, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714868

RESUMO

Thymoquinone (TQ), the most prominent constituent of Nigella sativa seeds, essential oil, is reported to possess an organ protective effect via Nrf2 expression and activation of Phase-II antioxidant enzymes. Haemorrhagic cystitis is the sudden onset of haematuria combined with bladder pain and irritable bladder symptoms are the known toxic effects of cyclophosphamide (CYP) chemotherapy. The objective of the present study was to investigate and compare the protective effect of thymoquinone (TQ) and thymoquinone nanoparticles (TQ-NP) in the kidney against CYP-induced haemorrhagic cystitis. Primarily, TQ-NP was fabricated by synthesis of N-acetylated chitosan and nanoparticle preparation by the ionic gelation technique. They were characterized by particle size, polydispersive index (PDI), zeta potential, entrapment efficiency (EE), SEM, and dynamic scattering calorimetry (DSC). Moreover, fluorescein isothiocyanate (FITC) labeled NPs were prepared for biodistribution studies. The protective mechanisms of TQ-NP included its anti-inflammatory activity, inhibitory effects on cytokine levels, and protection against the DNA damage in the bladder epithelium. The cystitis was induced in rats by orally administering 200 mg/kg of CYP. The dose-dependent protective effect of the TQ-NP was determined by intravenously administering 1, 2, and 5 mg/kg of the TQ-NP to CYP-treated rats. The present study revealed that the TQ-NP prepared by ionic gelation method provides kidney targeted delivery of TQ as compared to TQ solution. The mean particle size, PDI, and %EE of TQ-NP were 272.6 nm, 0.216, 70.81 ± 0.12% respectively. The zeta potential of thymoquinone-loaded nanoparticles was found to be -20.7 mV and - 22.6 mV respectively before and after lyophilization. SEM study also confirmed the small size and spherical shape. Pharmacokinetic studies revealed the improvement in half-life and prolonged action of the TQ-NP as compared to the TQ solution. Also, TQ-NP administration showed more protection against the characteristic histological alterations in the bladder in comparison to TQ solution. The present study indicates that TQ-NP exerts potent anti-oxidant, DNA protective and cytokine inhibitory activity at considerably lower concentrations as compared to plain TQ solution. The nano formulation of TQ using N-acetylated chitosan provides effective kidney targeted delivery of TQ, which in turn improves its retention and protective efficacy against CYP-induced haemorrhagic cystitis.


Assuntos
Quitosana , Cistite , Nanopartículas , Animais , Antioxidantes , Benzoquinonas/química , Benzoquinonas/farmacologia , Ciclofosfamida/toxicidade , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Citocinas , Dano ao DNA , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Rim , Nanopartículas/química , Ratos , Distribuição Tecidual
12.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566130

RESUMO

Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.


Assuntos
Neoplasias , Nigella sativa , Benzoquinonas/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nigella sativa/metabolismo , Óleos de Plantas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Integr Cancer Ther ; 21: 15347354221099537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583244

RESUMO

Breast cancer is the most harmful malignancy in women worldwide. Therefore, in the current study, we investigated the combinatory effect of natural bioactive compounds, including curcumin (Cur) and thymoquinone (TQ), on MCF7 and MDA-MB-231 breast cancer cell lines' progression. We investigated the Fa values and combination index of Cur and TQ in this context. Moreover, cytotoxicity percentages, annexin-V, proliferation, colony formation, and migration assays were used along with cell cycle analysis. In addition, caspase-3, phosphatidylinositol 3-kinase (PI3K), and protein kinase B (AKT) protein levels were determined by ELISA assessment. The results showed that Cur, TQ, and Cur + TQ induced apoptosis with cell cycle arrest and decreased cell proliferation, colony formation, and migration activities. Cur + TQ combination significantly increased caspase-3 and decreased PI3K and AKT protein levels. These results suggest the promising anticancer benefit of the Cur and TQ combination against breast cancer.


Assuntos
Neoplasias da Mama , Curcumina , Apoptose , Benzoquinonas/farmacologia , Neoplasias da Mama/metabolismo , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Feminino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
14.
Phytochemistry ; 200: 113213, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35472482

RESUMO

Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.


Assuntos
Neoplasias , Nigella sativa , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Nigella sativa/química
15.
Bioorg Chem ; 120: 105587, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026560

RESUMO

Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Nigella sativa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzoquinonas/farmacologia , Nigella sativa/química , Extratos Vegetais/uso terapêutico , Timol/análogos & derivados
16.
Drug Chem Toxicol ; 45(5): 2328-2340, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34233550

RESUMO

In the field of environmental toxicology, endocrine-disrupting effects have become a major concern. The present research set out to investigate the possible reproductive toxicity of acrylamide. The research was also expanded to explore the protective effects of two nutraceuticals, thymoquinone (TQ) and capsaicin, against acrylamide-induced reproductive toxicity. Six groups of sixty male albino rats were created. Group 1 was used as a control. Rats were administered a daily dose of acrylamide and acted as the model in Group 2. TQ was provided to rats once a day in Group 3. Capsaicin was administered to rats once a day in Group 4. TQ was given once daily to rats exposed to acrylamide in Group 5. Rats were given capsaicin once a day for eight weeks after being exposed to acrylamide in Group 6. Acrylamide induced oxidative stress, testicular NF-κB/p65 expression, and down-regulated the expression of occludin, all of which can contribute to its testicular toxicity, while TQ or capsaicin removes all of these toxicity signs. TQ and capsaicin have shown efficacy in alleviating all of the acrylamide's toxic insults in the current reproductive toxicity model. Both nutraceuticals upregulated the expression of occludin in testicular tissue and restored tight junction integrity, in addition to their well-known antioxidant and anti-inflammatory effects, which were confirmed in this study.


Assuntos
Acrilamida , Capsaicina , Masculino , Acrilamida/toxicidade , Benzoquinonas/farmacologia , Capsaicina/farmacologia , Inflamação , Ocludina/farmacologia , Estresse Oxidativo , Junções Íntimas , Animais , Ratos
17.
Biomolecules ; 11(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944518

RESUMO

The deodorant activity of black cumin (Nigella sativa L.) seed, a spice used to flavor curry and vegetable foods in Southwest Asia, against garlic (Allium sativum L.) organosulfur compounds related to human malodor was evaluated. Black cumin seed essential oil showed remarkable deodorant activity against garlic essential oil. The mode of action of this deodorant activity was presumed to be that black cumin seed essential oil covalently reacted with the organosulfur compounds in garlic. Therefore, thymoquinone, which is a major constituent in black cumin seed essential oil, and allyl mercaptan, which is one of the organosulfur compounds produced by cutting garlic, were reacted in vitro, and the products were purified and elucidated using spectroscopic data. As a result, these substances were identified as different allyl mercaptan adducts to dihydrothymoquinone. This chemical reaction was presumed to play a key role in the deodorant activity of black cumin seed essential oil.


Assuntos
Benzoquinonas/farmacologia , Desodorantes/farmacologia , Alho/química , Nigella sativa/química , Benzoquinonas/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Concentração de Íons de Hidrogênio , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Compostos de Sulfidrila/química
18.
Curr Drug Metab ; 22(12): 978-988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34749619

RESUMO

BACKGROUND: In over 300 million clinical cases, antidepressant drugs seem to provide only symptomatic relief and limited protection in life-threatening depressive events. OBJECTIVES: To compare neuronal-signaling mechanism and neuroprotective roles of Thymoquinone (TQ) suspension and its SLN (TQSLN) against standard antidepressant drug fluoxetine. METHODS: This research investigated in-silico docking at NF-KB p50 active site, CLSM based gut permeation, screening of antidepressant activities and neurosignaling pathways involved. RESULTS: As compared to fluoxetine, TQ reporteda significantly better docking score (-6.83 v/s -6.22) and a better lower free binding energy of (-34.715 Kcal/mol v/s -28.537 Kcal/mol). While poorly oral bioavailable and P-gp substrate TQ reported approximately 250% higher gut permeation if delivered as TQSLN formulation. In locomotor studies, as compared to TQS, TQSLN favored more prominent (p< 0.010) elevation in average time, horizontalactivity, average-velocity, and total-movement with reduced rest time LPS treated groups. However, in the tail suspension test, TQSLN significantly reduced immobility time (p<0.010). Similarly, In the modified force swimming test, TQSLN also significantly reduced immobility time (p<0.010), but swimming time (p<0.010) and climbing time (p<0.050) were significantly elevated. Subsequently, TQSLN reported significantly elevated neuroprotective BDNF (p<0.010) as well as hippocampal 5HT/TRP; accompanied with reduced levels of hippocampal inflammatory markers TNF-α (p<0.001) and IL-6 (p<0.010) as well as lower kynurenine and tryptophan ratio (KYN/TRP). Similarly, the hippocampal CA1 region further revealed TQSL more predominantly attenuated NF-kB nuclear translocation in the brain. CONCLUSION: Despite the poor bioavailability of TQ, TQSLN potentially attenuates neuroinflammatory transmitters and favors BDNF to modulate depressive neurobehavioral states.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzoquinonas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipossomos/farmacologia , NF-kappa B/metabolismo , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Disponibilidade Biológica , Depressão/tratamento farmacológico , Depressão/metabolismo , Sistemas de Liberação de Medicamentos , Simulação de Acoplamento Molecular , Nanopartículas , Neuroimunomodulação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Preparações de Plantas/farmacologia , Ratos , Fator de Necrose Tumoral alfa/metabolismo
19.
Sci Rep ; 11(1): 21315, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716371

RESUMO

Sargassum serratifolium (C. Agardh) C.Agardh, a marine brown alga, has been consumed as a food and traditional medicine in Asia. A previous study showed that the meroterpenoid-rich fraction of an ethanolic extract of S. serratifolium (MES) induced adipose tissue browning and suppressed diet-induced obesity and metabolic syndrome when orally supplemented. Sargahydroquinoic acid (SHQA) is a major component of MES. However, it is unclear whether SHQA regulates energy homeostasis through the central nervous system. To examine this, SHQA was administrated through the third ventricle in the hypothalamus in high-fat diet-fed C57BL/6 mice and investigated its effects on energy homeostasis. Chronic administration of SHQA into the brain reduced body weight without a change in food intake and improved metabolic syndrome-related phenotypes. Cold experiments and biochemical analyses indicated that SHQA elevated thermogenic signaling pathways, as evidenced by an increase in body temperature and UCP1 signaling in white and brown adipose tissues. Peripheral denervation experiments using 6-OHDA indicated that the SHQA-induced anti-obesity effect is mediated by the activation of the sympathetic nervous system, possibly by regulating genes associated with sympathetic outflow and GABA signaling pathways. In conclusion, hypothalamic injection of SHQA elevates peripheral thermogenic signaling and ameliorates diet-induced obesity.


Assuntos
Alcenos/farmacologia , Benzoquinonas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Termogênese/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Alcenos/administração & dosagem , Animais , Benzoquinonas/administração & dosagem , Hipotálamo , Masculino , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Sistema Nervoso Simpático/efeitos dos fármacos
20.
Int J Biol Sci ; 17(13): 3456-3475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512159

RESUMO

Bladder carcinoma is among the top 10 most frequently diagnosed cancer types in the world. As a phytochemical active metabolic, thymoquinone (TQ) is extracted from seeds of Nigella sativa, possessing various biological properties in a wide range of diseases. Moreover, the outstanding anti-cancer effect of TQ is attracting increasing attentions. In certain circumstances, moderate autophagy is regarded to facilitate the adaptation of malignant cells to different stressors. Conversely, closely linked with the mitochondrial membrane potential (MMP) loss, the upregulation of intracellular reactive oxygen species (ROS) is reported to activate the cell apoptosis in many cancer types. Furthermore, the vital effects of microRNAs in the pathological processes of cancer cells have also been confirmed by previous studies. The present research confirms that TQ restrains the viability, proliferation, migration and invasion through activating caspase-dependent apoptosis in bladder carcinoma cells, which is mediated by TQ induced ROS increase in bladder carcinoma cells. Furthermore, TQ is proved to block the fusion of autophagosomes and lysosomes, causing the accumulation of autophagosomes and subsequent cell apoptosis. In addition, TQ is also found to initiate the miR-877-5p/PD-L1 axis, which suppresses the epithelial mesenchymal transition (EMT) and invasion of bladder carcinoma cells. Taken together, TQ induces the apoptosis through upregulating ROS level and impairing autophagic flux, and inhibiting the EMT and cell invasion via activating the miR-877-5p/PD-L1 axis in bladder carcinoma cells.


Assuntos
Antígeno B7-H1/metabolismo , Benzoquinonas/uso terapêutico , Carcinoma/tratamento farmacológico , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Autofagia/efeitos dos fármacos , Benzoquinonas/farmacologia , Carcinoma/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA